Research on the Distribution of Overlying Rock Fractures Caused by Mining in Ultra-Thick Coal Seams and Its Impact on the Near-Surface Aquifer

Author:

Zhou Yang12,Yu Xueyi1

Affiliation:

1. College of Energy Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

2. CCTEG Xi’an Research Institute (Group) Co., Ltd., Xi’an 710077, China

Abstract

Near-surface water is the foundation for maintaining the ecological environment, and coal remains an important energy source in today’s world as we face a shortage of green energy. Achieving near-surface-water protection while safely mining coal is an important way to ensure social and ecological health and sustainability. The key lies in whether the fracture height of the mining overlying strata affects the aquifer. This article compiles the coupling finite element and discrete element method (CFE-DEM) and established mechanical constitutive models such as the interaction between rock blocks on both sides of the penetrated fracture, rock mass fracture process, and the plastic deformation law of rocks based on the results of mining-induced overlying rock failure. On this basis, a numerical calculation model is established based on the engineering geological conditions of the Beixinyao Coal Mine. The numerical simulation results indicate that the theory and the CFE-DEM method can numerically simulate the distribution and evolution of mining-induced overlying rock fractures. The water-conducting fractures in the overlying strata of extra-thick coal seams extend to the front of the working face in a trapezoidal shape, and the angle formed between them and the advancing direction ranges from 62° to 75°. Combined with the in situ measurement results, the height of the water-conducting fracture zone of the extra-thick coal seam is between 209 m and 230 m; the fractures were not found to have affected the aquifer at a vertical distance of 252 m from the coal seam. This means that the impact of ultra-thick coal seam mining on the aquifer is very limited. The research is of great significance for ensuring coal mining and surface ecological sustainability in ultra-thick coal seam areas.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3