Physical, Rheological, and Permanent Deformation Behaviors of WMA-RAP Asphalt Binders

Author:

Bohn Kátia Aline1ORCID,Thives Liseane Padilha1ORCID,Specht Luciano Pivoto2ORCID

Affiliation:

1. Postgraduate Program in Civil Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil

2. Department of Transportation, Federal University of Santa Maria, Santa Maria 97105-900, Brazil

Abstract

With the rapid global expansion of road networks, the asphalt industry faces several environmental challenges, such as material shortages, environmental concerns, escalating material costs, demand for eco-friendly materials, and the implementation of “Net Zero” policies. Given these challenges and recognizing the need to explore new solutions, this research evaluated asphalt binder samples incorporating Warm Mix Asphalt (WMA) and Reclaimed Asphalt Pavement (RAP), or WMA-RAP. The assessment focused on analyzing the physical, rheological, and permanent deformation characteristics of WMA-RAP samples containing 20%, 35%, and 50% recycled pavement. The study utilized a chemical surfactant-type WMA additive, Evotherm® P25. The findings showed that the WMA-RAP combination resulted in increased stiffness ranging from 247% to 380% and a reduced phase angle of 16% to 26% with an increasing RAP content from 20% to 50% at Tref 20 °C and 10 Hz. Furthermore, the penetration decreased from 20% to 47%, and the softening point increased from 7% to 17%. An improvement of 2 PGHs was observed by adding 35% and 50% RAP. Additionally, WMA samples containing up to 50% RAP presented more elevated permanent deformation resistance, supporting traffic levels of 64V or 70H. WMA-RAP binders allow mixture production at lower temperatures—an amount of 30 °C less—conserving energy and decreasing the need for new aggregate materials by incorporating recycled materials, thus minimizing the environmental impact.

Funder

National Council for Scientific and Technological Development

Coordination of Higher Level Staff Improvement—Brazil

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference67 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3