State Estimation of Distributed Drive Electric Vehicle Based on Adaptive Kalman Filter

Author:

Fan Ruolan1,Li Gang1ORCID,Wu Yanan1

Affiliation:

1. Automobile and Traffic Engineering, Liaoning University of Technology, Jinzhou 121001, China

Abstract

As a new type of transportation, the distributed drive electric vehicle is regarded as the main development direction of electric vehicles in the future. Due to the advantages of the independently controllable driving torque of each wheel, it provides more favorable conditions for vehicle active safety control. Acquiring accurate and real-time parameters such as vehicle speed and side slip angle is a prerequisite for vehicle active safety control. Therefore, relying on the National Natural Science Foundation of China, this paper takes the distributed drive electric vehicle in the form of four-wheel independent drive and steering as the research object. Taking the measurement data of low-cost vehicle sensors as input and adaptive Kalman filtering as theoretical support, the sub-filter of federal Kalman filtering adds a fuzzy controller on the basis of volumetric Kalman filtering, and designs the vehicle driving state estimation algorithm to realize the accurate estimation of driving state information. Finally, the typical experimental conditions are selected, and the designed algorithm is verified by the co-simulation of MATLAB/Simulink and CarSim. At the same time, the algorithm is further verified based on the driving simulator hardware-in-the-loop experimental platform. The results show that the designed estimation algorithm has good effects in terms of accuracy, stability, and real-time performance.

Funder

National Natural Science Foundation of China Joint Foundation Program

Liaoning Provincial Natural Science Foundation Upper-level Program

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3