Research on Ecological Driving Following Strategy Based on Deep Reinforcement Learning

Author:

Zhou Weiqi12ORCID,Wu Nanchi1,Liu Qingchao12,Pan Chaofeng1,Chen Long1

Affiliation:

1. Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China

2. Research Institute of Engineering Technology, Jiangsu University, Zhenjiang 212013, China

Abstract

Traditional car-following models usually prioritize minimizing inter-vehicle distance error when tracking the preceding vehicle, often neglecting crucial factors like driving economy and passenger ride comfort. To address this limitation, this paper integrates the concept of eco-driving and formulates a multi-objective function that encompasses economy, comfort, and safety. A novel eco-driving car-following strategy based on the deep deterministic policy gradient (DDPG) is proposed, employing the vehicle’s state, including data from the preceding vehicle and the ego vehicle, as the state space, and the desired time headway from the intelligent driver model (IDM) as the action space. The DDPG agent is trained to dynamically adjust the following vehicle’s speed in real-time, striking a balance between driving economy, comfort, and safety. The results reveal that the proposed DDPG-based IDM model significantly enhances comfort, safety, and economy when compared to the fixed-time headway IDM model, achieving an economy improvement of 2.66% along with enhanced comfort. Moreover, the proposed approach maintains a relatively stable following distance under medium-speed conditions, ensuring driving safety. Additionally, the comprehensive performance of the proposed method is analyzed under three typical scenarios, confirming its generalization capability. The DDPG-enhanced IDM car-following model aligns with eco-driving principles, offering novel insights for advancing IDM-based car-following models.

Funder

The National Natural Science Foundation of China

Key Research and Development Program of Jiangsu Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3