Accumulation and Toxicity of Polycyclic Aromatic Hydrocarbons in Long-Term Soil Irrigated with Treated Wastewater

Author:

Sethi Shrikanta Shankar1,Ambade Balram1ORCID,Mohammad Faruq2ORCID,Al-Lohedan Hamad A.2ORCID,Soleiman Ahmed A.3

Affiliation:

1. Department of Chemistry, National Institute of Technology, Jamshedpur 831014, India

2. Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

3. College of Sciences and Engineering, Southern University, Baton Rouge, LA 70813, USA

Abstract

Our study focuses on examining the effects of treated wastewater irrigation (TWWI) on agricultural soils in water-scarce regions, with a specific emphasis on the presence and accumulation of polycyclic aromatic hydrocarbons (PAHs). This issue is particularly significant due to its potential threats to environmental security. During our research, we discovered the existence of 16 different PAHs in these soils, which are known to have harmful impacts on ecosystems and human health. The concentration of total PAHs ranged from 163.9 ng g−1 to 9177.4 ng g−1, with 4- and 5-ring PAHs being the most dominant contributors. The PAHs Fluoranthene and Pyrene were found to be the most prevalent in all soil samples. Comparing the PAH concentrations in our research area to those reported in other studies, we observed that the agricultural areas in our study were more contaminated. Through positive matrix factorization (PMF) and diagnostic ratios (DRs) analyses, we identified petroleum combustion, vehicular emissions, as well as coal, grass, or wood combustion as the primary sources of PAH contamination. We also noted a negative correlation between clay, silt, pH, and PAH concentrations, while a significant positive relationship was observed between total organic carbon (TOC), sand, and PAHs. Based on the computed environmental risk index value, the presence of PAHs in the area poses a moderate to high level of ecological risk. TWWI was identified as the main contributor to PAHs in the agricultural soils we studied. Therefore, it is crucial to establish and enforce standards for wastewater reuse in agricultural fields before irrigation takes place.

Funder

“Ministry of Education” in Saudi Arabia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3