Fast and Robust State Estimation for Active Distribution Networks Considering Measurement Data Fusion and Network Topology Changes

Author:

Wan Dai12,Zhao Miao12,He Guidong3,Che Liang3,Guo Qi3,Zhou Qianfan1

Affiliation:

1. State Grid Hunan Electric Power Company Limited Research Institute, Changsha 410000, China

2. State Grid Joint Laboratory for Intelligent Application and Key Equipment in Distribution Network, Changsha 410000, China

3. College of Electrical and Information Engineering, Hunan University, Changsha 410082, China

Abstract

With the integration of distributed generations (DGs), distribution networks are being transformed into active distribution networks (ADNs). Due to ADNs‘ complex operational scenarios, massive data, and fast-changing network topologies, traditional state-estimation (SE) methods are inadequate to meet the requirements of computational accuracy, computational speed, and robustness. Aiming at the SE of ADNs, this paper proposes a data-driven and classic-model-integrated SE method, which uses an SE neural network (NN) to perform an initial estimation, and then uses linear SE to refine the estimation. It applies PMU and SCADA data fusion and is robust to noise and ADN topology changes. The simulations on the IEEE standard system verify that the proposed method is superior to traditional SE methods in terms of estimation accuracy, calculation speed, and robustness. This study provides ADNS with a new effective estimation scheme, which is of great significance in the context of promoting the development of renewable energy.

Funder

State Grid Hunan Electric Power Research Institute

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3