A Blockchain-Based Multi-Unmanned Aerial Vehicle Task Processing System for Situation Awareness and Real-Time Decision

Author:

Chen Ziqiang1,Xiong Xuanrui1,Wang Wei2,Xiao Yulong1,Alfarraj Osama3ORCID

Affiliation:

1. School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

2. School of Software, Dalian University of Technology, Dalian 116024, China

3. Computer Science Department, Community College, King Saud University, Riyadh 11437, Saudi Arabia

Abstract

With the rapid advancement of Unmanned Aerial Vehicle (UAV) technology, UAV swarms are being extensively applied in various fields, such as intelligent transportation, search and rescue, logistics delivery, and aerial mapping. However, the utilization of UAV swarms in sustainable transportation also presents some challenges, such as inefficient task allocation and data transmission security issues, highlighting the importance of privacy protection in this context. To address these issues, this study applies blockchain technology to multi-UAV tasks and proposes a blockchain-based multi-UAV task processing system for situation awareness and real-time decisions. The primary objective of this system is to enhance the efficiency of UAV swarm task scheduling, bolster data transmission security, and address privacy protection concerns. Utilizing the highly secure features of blockchain technology, the system constructs a distributed task processing network. System tasks are stored in the blockchain through smart contracts, ensuring the immutability and verifiability of task information. Smart contracts have an automatic execution capability, whereby the system can efficiently coordinate tasks and maintain the consistency of task execution information through consensus mechanisms. Additionally, adopting the Pointer Network structure for intelligent path planning based on task allocation results leads to the attainment of the shortest service routes, consequently expanding the service coverage of sustainable transportation systems while reducing energy consumption. This further advances the realization of urban sustainable transportation. Through experimental results, we verify that the proposed system enables real-time task scheduling and collaborative processing for multiple UAVs, significantly enhancing the efficiency, security, and privacy protection level of UAV swarm task execution in the context of sustainable transportation. It makes a positive contribution to building more sustainable urban transportation systems.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3