Exploring a Novel Reservoir Impoundment Operation Framework for Facilitating Hydropower Sustainability

Author:

Ning Zhihao1ORCID,Zhou Yanlai1ORCID,Lin Fanqi1,Zhou Ying1,Luo Qi1

Affiliation:

1. State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China

Abstract

Reservoir impoundment operation has far-reaching effects on the synergies of hydropower output, floodwater utilization, and carbon fluxes, but flood risk is significantly increasing, which is especially true when shifting to earlier impoundment timings and lifting reservoir water levels. This study proposed a novel reservoir impoundment operation framework driven by flood prevention, hydropower production, floodwater utilization, and carbon emission management. The Three Gorges Reservoir in the Yangtze River was selected as a case study. The results demonstrated that flood prevention safety could be guaranteed with the initial impoundment timings on and after the first of September. The best scheme of reservoir impoundment operation could efficiently boost synergistic benefits by enhancing 2.98 billion kW·h (8.8%) hydropower output and 6.4% water impoundment rate and decreasing greenhouse gas (GHG) fluxes and carbon budget by 28.15 GgCO2e/yr (4.6%) and 0.44 (23.1%), respectively, compared with the standard operation policy. This study can not only provide scientific and technical support for reservoir impoundment operations, benefiting water–carbon synergies, but can also suggest policymakers with various favorable advancing impoundment timing and lifting reservoir water level schemes to experience related risks and benefits in the interest of hydropower sustainability.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3