Low-Carbon Optimization Design for Low-Temperature Granary Roof Insulation in Different Ecological Grain Storage Zones in China

Author:

Li Dinan1,Huang Yuge1,Guo Chengzhou12,Wang Haitao1ORCID,Jia Jianwei3,Huang Lu3

Affiliation:

1. College of Civil Engineering, Henan University of Technology, Zhengzhou 450001, China

2. Henan University of Technology Design and Research Co., Ltd., Zhengzhou 450001, China

3. China Construction Seventh Engineering Division Corp. Ltd., Zhengzhou 450003, China

Abstract

The optimization design of buildings is very important to the energy consumption, carbon emissions, and sustainable development of buildings. The low-temperature granary has a low grain storage temperature and high energy consumption indexes. The design scheme of the roof insulation for a low-temperature granary should be determined in actual building design processes by considering the costs, carbon emissions, and outdoor climate, comprehensively. In this paper, a new low-carbon optimization design method is proposed for the roof insulation in the low-temperature granary. The low-carbon optimization design method can respond to the cost issue, emission reduction issue, and outdoor climate issue, simultaneously. Moreover, the low-temperature granary roof insulation of different ecological grain storage zones in China is optimized in terms of carbon reduction by using the proposed low-carbon optimization design method. The application results of the optimization design method in different ecological grain storage zones in China indicate that the outdoor climate has significant impacts on the economic performance and carbon reduction effect of roof insulation. The cost considerations related to carbon emissions can apparently increase the economic efficiency of roof insulation. The optimal economic thicknesses of expanded polystyrene (EPS) in the cities of Urumqi, Harbin, Zhengzhou, Changsha, Guiyang, and Haikou are 0.025 m, 0.037 m, 0.085 m, 0.097 m, 0.072 m, and 0.148 m, respectively. The different outdoor climates of the seven ecological grain storage areas in China have important influences on the comprehensive economic performances of low-temperature granary roof insulation. The design of the low-temperature granary roof insulation in Haikou city has the best economic performance among the seven ecological grain storage zones in China.

Funder

Science and Technology Planning Project of Henan Province of China

Open Project Program of Henan Key Laboratory of Grain and Oil Storage Facility & Safety

Cultivation Programme for Young Backbone Teachers of Henan University of Technology

Innovative Funds Plan of Henan University of Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3