Two-Stage Optimization Scheduling of Virtual Power Plants Considering a User-Virtual Power Plant-Equipment Alliance Game

Author:

Gao Yan1,Gao Long1,Zhang Pei2,Wang Qiang1

Affiliation:

1. State Grid Baoding Electric Power Supply Company, Baoding 071000, China

2. School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China

Abstract

Distributed renewable energy, loads, and power sources can be aggregated into virtual power plants (VPPs) to participate in energy market transactions and generate additional revenue. In order to better coordinate the transaction relationships among various entities within VPPs, this paper proposes a two-stage optimization model for VPPs that considers the user-VPP-equipment alliance. Firstly, starting from the basic structure of VPP, it is proposed to divide the alliances in VPP into two alliances: demand-side user-VPP and supply-side equipment-VPP. And a VPP optimization framework considering the cooperative game of the user-VPP-equipment alliance has been established. Then, a two-stage optimization model for VPPs was established considering the cooperative game of user-VPP-equipment alliance. The day-ahead optimization model takes economic and social benefits as the dual objectives, and the intraday optimization model aims to minimize the cost of deviation penalties. Secondly, taking into account the risk levels and comprehensive marginal benefits of various entities within the VPP, a profit distribution method combining improved Shapley values and independent risk contribution theory is adopted to allocate the total revenue of the VPP. The case results show that the operating cost has been reduced by 5.75%, the environmental cost has been reduced by 4.46%, and the total profit has increased by 29.52%. The model can improve the overall efficiency of VPPs.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3