Seismic Characterization of a Landslide Complex: A Case History from Majes, Peru

Author:

Yang Jihyun1ORCID,Shragge Jeffrey1ORCID,Girard Aaron J.1ORCID,Gonzales Edgard2ORCID,Ticona Javier2ORCID,Minaya Armando2ORCID,Krahenbuhl Richard1ORCID

Affiliation:

1. Geophysics Department, Colorado School of Mines, Golden, CO 80401, USA

2. School of Geophysical Engineering, Universidad Nacional de San Augstín, Arequipa 04001, Peru

Abstract

Seismic characterization of landslides offers the potential for developing high-resolution models on subsurface shear-wave velocity profile. However, seismic methods based on reflection processing are challenging to apply in such scenarios as a consequence of the disturbance to the often well-defined structural and stratigraphic layering by the landslide process itself. We evaluate the use of alternative seismic characterization methods based on elastic full waveform inversion (E-FWI) to probe the subsurface of a landslide complex in Majes, southern Peru, where recent agricultural development and irrigation activities have altered the hydrology and groundwater table and are thought to have contributed to increased regional landslide activities that present continuing sustainability community development challenges. We apply E-FWI to a 2D near-surface seismic data set for the purpose of better understanding the subsurface in the vicinity of a recent landslide location. We use seismic first-arrival travel-time tomography to generate the inputs required for E-FWI to generate the final high-resolution 2D compressional- and shear-wave (P- and S-wave) velocity models. At distances greater than 140 m from the cliff, the inverted models show a predominantly vertically stratified velocity structure with a low-velocity near-surface layer between 5–15 m depth. At distances closer than 140 m from the cliff, though, the models exhibit significantly reduced shear-wave velocities, stronger heterogeneity, and localized shorter wavelength structure in the top 20 m. These observations are consistent with those expected for a recent landslide complex; however, follow-on geotechnical analysis is required to confirm these assertions. Overall, the E-FWI seismic approach may be helpful for future landslide characterization projects and, when augmented with additional geophysical and geotechnical analyses, may allow for improved understanding of the hydrogeophysical properties associated with suspected ground-water-driven landslide activity.

Funder

Center for Mining Sustainability

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3