MMC-HVDC High-Frequency Resonance Suppression Strategy Based on Multi-Band Band-Stop Filters

Author:

Cui Tinghe1,Wang Weiqing1,Wang Haiyun1

Affiliation:

1. College of Electrical Engineering, Xinjiang University, Urumqi 830000, China

Abstract

Renewable energy generation is a manifestation of global economic and societal advancement and serves as a fundamental assurance for humanity’s pursuit of sustainable development. However, recent years have witnessed several instances of high-frequency resonance events in high-voltage direct current (HVDC) transmission systems based on modular multilevel converters (MMC), which have resulted in converter station tripping and significant repercussions on the alternating current (AC) grid. This paper addresses the mid-to-high frequency resonance issues prevalent in flexible DC transmission systems employing modular multilevel converters (MMC-HVDC). To tackle these concerns, an impedance model for MMC’s AC side is established. Utilizing impedance analysis, the essential factors contributing to the negative damping characteristics of MMC are identified as delay and voltage feedforward loops, predominantly causing negative damping in the frequency range exceeding 400 Hz. In response, a suppression strategy is proposed, involving the incorporation of a multi-band stop filter and virtual impedance. This strategy ensures that within the 0–2000 Hz frequency range, only the impedance phase within 230–430 Hz slightly surpasses 90°. Consequently, the phase difference between MMC’s positive-sequence impedance and the AC system impedance is reduced from 222° to 174.7°, thus guaranteeing secure grid operation. Lastly, the accuracy and effectiveness of the theoretical analysis and suppression methodology are verified through the development of an electromagnetic transient model in MATLAB/Simulink, considering delay fluctuations of ±10%.

Funder

National Natural Science Foundation of China

Major Science and Technology Special Project of Xinjiang Uygur Autonomous Region Science and Technology Department

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3