Preparation and Characterization of Microcrystalline Cellulose/Polylactic Acid Biocomposite Films and Its Application in Lanzhou Lily (Lilium davidii var. unicolor) Bulbs Preservation

Author:

Ren Haiwei12ORCID,Li Siqi12,Gao Ming1,Xing Xueye12,Tian Yaqin12ORCID,Ling Zhe3,Yang Weixia12,Pan Lichao12,Fan Wenguang1,Zheng Yi4

Affiliation:

1. School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China

2. China Northwest Collaborative Innovation Center of Low-carbon Unbanization Technologies of Gansu and MOE, Lanzhou University of Technology, Lanzhou 730050, China

3. Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China

4. Department of Grain Science and Industry, Kansas State University, 101C BIVAP, 1980 Kimball Avenue, Manhattan, KS 66506, USA

Abstract

Green biodegradable bio-based films have gained interest in replacing petroleum-derived plastic packaging materials as a new preservation strategy for fruits and vegetables to alleviate environmental pressures. In this study, we aimed to develop novel biodegradable composite films based on microcrystalline cellulose (MCC) reinforced polylactic acid (PLA). Our results demonstrated that the addition of 3% MCC to PLA could improve its tensile strength. Scanning electron microscopy analysis revealed that MCC dispersed well in PLA at lower content while agglomerated at higher content. It was discovered that all four types of MCC/PLA biocomposite films could retard the color change of Lanzhou lily bulbs, accompanied by maintaining favorable total soluble solid, total sugar, total polyphenols, and flavonoid content, inhibiting the activities of phenylalanine ammonia-lyase and the content of malondialdehyde during storage. Moreover, the preservation effect of MCC/PLA biocomposite films on Lanzhou lily bulbs was evaluated using a membership function, and the SSS MCC/PLA biocomposite film demonstrated a favorable fresh-keeping effect. In conclusion, four types of MCC from different biomass materials added to PLA-based products can be beneficial in improving the attractive properties of biocomposite films. These films are expected to replace petroleum-derived plastics as a new packaging material for preserving Lanzhou lily bulbs.

Funder

National Natural Science Foundation of China

Key Project of Natural Science Foundation of Gansu Province

Intellectual property program of Gansu Province

Red Willow First-class Discipline

Distinguished Young Cultivation of Lanzhou University of Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3