A Novel Biomimetic Lung-Shaped Flow Field for All-Vanadium Redox Flow Battery

Author:

Zhong Longchun12,Chu Fengming3ORCID

Affiliation:

1. School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China

2. Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China

3. College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Abstract

The all-vanadium redox flow battery (VRFB) was regarded as one of the most potential technologies for large-scale energy storage due to its environmentally friendliness, safety and design flexibility. The flow field design and mass transfer performance in the porous electrodes were some of the main factors to influence the battery performance. A novel biomimetic lung-shaped flow field was designed, and the battery performance was compared with the serpentine flow field by numerical simulation analysis. The results showed that the charging voltage of the VRFB was reduced by about 5.34% when SOC = 0.9 compared with the serpentine flow field. On the other hand, the discharging voltage was promoted by about 9.77% when SOC = 0.1 compared with the serpentine flow field. The battery performance of the VRFB is obviously due to the enhancement of the mass transfer performance. The uniformity factor was promoted by 35.6% by the lung-shaped flow field when SOC = 0.1, which can reduce the polarization loss. The average concentration of the active ions was increased by about 18% by the lung-shaped biomimetic flow field, which was of significance to the electrochemical reaction. The design of the lung-shaped flow field can contribute to the application of the VRFB.

Funder

Open Research Fund Program of Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3