Modular Construction of Industrial Buildings and Lean Thinking—Identifying the Role of Daylight through a Case Study

Author:

Mavridou Theodora1,Nanos Nikolaos2,Doulos Lambros3ORCID

Affiliation:

1. School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK

2. School of Civil Engineering and Surveying, University of Portsmouth, Portsmouth PO1 3AH, UK

3. School of Applied Arts and Sustainable Design, Hellenic Open University, 26335 Patra, Greece

Abstract

This research looks at the optimisation of industrial buildings through the application of the principles of lean thinking and philosophy, with an emphasis on daylighting in the design of industrial buildings. With the use of multiparametric analysis tools, we provide a solution for the optimized design of a roof system for the provision of daylight, whilst maximising the benefits and minimising the cost during its lifetime, in different geographic and climatic regions in Greece. An optimisation algorithm has been proposed that improves the selection of the optimal roof opening type and geometry for industrial buildings in different geographical locations. The investigation of a roof system model was based on the maximum performance of daylighting, while reducing unnecessary energy use and cost. To reach our solution, we investigated the sawtooth roofing system in terms of energy cost (cooling, heating, and lighting), geography (orientation, location), and building variables (the opening dimensions and number). This has been achieved through the use of multi-parametric design, computational simulations, genetic algorithms, and the post-processing of results through statistical analysis. The use of natural lighting proved to be an effective sustainability strategy, providing energy savings of up to 20–30%, and offering economic advantages, hence presenting a comprehensive approach that benefits stakeholders and end-users by reducing the thermal loads, cooling requirements, initial HVAC costs, and overall waste. The developed algorithm has identified the optimal opening size and distance as ranging between 10 and 11 m for the conditions examined.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3