Abstract
It is difficult to obtain many labeled Link Establishment (LE) behavior signals sent by non-cooperative short-wave radio stations. We propose a novel unidimensional Auxiliary Classifier Generative Adversarial Network (ACGAN) to get more signals and then use unidimensional DenseNet to recognize LE behaviors. Firstly, a few real samples were randomly selected from many real signals as the training set of unidimensional ACGAN. Then, the new training set was formed by combining real samples with fake samples generated by the trained ACGAN. In addition, the unidimensional convolutional auto-coder was proposed to describe the reliability of these generated samples. Finally, different LE behaviors could be recognized without the communication protocol standard by using the new training set to train unidimensional DenseNet. Experimental results revealed that unidimensional ACGAN effectively augmented the training set, thus improving the performance of recognition algorithm. When the number of original training samples was 400, 700, 1000, or 1300, the recognition accuracy of unidimensional ACGAN+DenseNet was 1.92, 6.16, 4.63, and 3.06% higher, respectively, than that of unidimensional DenseNet.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference30 articles.
1. The Communication Relationship Discovery Based on the Spectrum Monitoring Data by Improved DBSCAN
2. Instruction flow mining algorithm based on the temporal sequence of node communication actions;Xiang;J. Commun. China,2019
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献