Vital-Signs Detector Based on Frequency-Shift Keying Radar

Author:

Sim Jae Young,Park Jae-Hyun,Yang Jong-Ryul

Abstract

A frequency-shift keying (FSK) radar in the 2.45-GHz band is proposed for highly accurate vital-signs detection. The measurement accuracy of the proposed detector for the heartbeat is increased by using the cross-correlation between the phase differences of signals at two frequencies used by the FSK radar, which alternately transmits and receives the signals with different frequencies. Two frequencies—2.45 and 2.5 GHz—are effectively discriminated by using the envelope detection with the frequency control signal of the signal generator in the output waveform of the FSK radar. The phase difference between transmitted and received signals at each frequency is determined after calibrating the I / Q imbalance and direct-current offset using a data-based imbalance compensation algorithm, the Gram–Schmidt procedure, and the Pratt method. The absolute-distance measurement results for a human being show that the vital signs obtained at each frequency using the proposed FSK radar have a cross-correlation. The heartbeat detection results for the proposed FSK radar at a distance of < 2.4 m indicate a reduction in the error rate and an increase in the signal-to-noise ratio compared with those obtained using a single operating frequency.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mutual Compensation Range Detection Method Using Multimodulation Radar for Precision Range Detection;IEEE Sensors Journal;2023-12-15

2. Frequency discrimination based on the different number of peaks in envelope detection of two‐tone continuous‐wave radar systems;Microwave and Optical Technology Letters;2022-11-11

3. Frequency Discrimination Based on the Different Number of Peaks in Envelope Detection of Two-Tone CW Radar;2022 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT);2022-08-29

4. Vital Signal Detection for Continuous-Wave Radar Sensor using Compensation Technique;2022 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT);2022-08-29

5. Frequency Discrimination Method Using Asymmetric Transmission Time in FSK Radar;Journal of Electromagnetic Engineering and Science;2022-07-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3