Convolutional-Neural-Network-Based Handwritten Character Recognition: An Approach with Massive Multisource Data

Author:

Saqib Nazmus,Haque Khandaker FoysalORCID,Yanambaka Venkata Prasanth,Abdelgawad Ahmed

Abstract

Neural networks have made big strides in image classification. Convolutional neural networks (CNN) work successfully to run neural networks on direct images. Handwritten character recognition (HCR) is now a very powerful tool to detect traffic signals, translate language, and extract information from documents, etc. Although handwritten character recognition technology is in use in the industry, present accuracy is not outstanding, which compromises both performance and usability. Thus, the character recognition technologies in use are still not very reliable and need further improvement to be extensively deployed for serious and reliable tasks. On this account, characters of the English alphabet and digit recognition are performed by proposing a custom-tailored CNN model with two different datasets of handwritten images, i.e., Kaggle and MNIST, respectively, which are lightweight but achieve higher accuracies than state-of-the-art models. The best two models from the total of twelve designed are proposed by altering hyper-parameters to observe which models provide the best accuracy for which dataset. In addition, the classification reports (CRs) of these two proposed models are extensively investigated considering the performance matrices, such as precision, recall, specificity, and F1 score, which are obtained from the developed confusion matrix (CM). To simulate a practical scenario, the dataset is kept unbalanced and three more averages for the F measurement (micro, macro, and weighted) are calculated, which facilitates better understanding of the performances of the models. The highest accuracy of 99.642% is achieved for digit recognition, with the model using ‘RMSprop’, at a learning rate of 0.001, whereas the highest detection accuracy for alphabet recognition is 99.563%, which is obtained with the proposed model using ‘ADAM’ optimizer at a learning rate of 0.00001. The macro F1 and weighted F1 scores for the best two models are 0.998, 0.997:0.992, and 0.996, respectively, for digit and alphabet recognition.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3