A Truly Robust Signal Temporal Logic: Monitoring Safety Properties of Interacting Cyber-Physical Systems under Uncertain Observation

Author:

Finkbeiner BerndORCID,Fränzle MartinORCID,Kohn FlorianORCID,Kröger Paul

Abstract

Signal Temporal Logic is a linear-time temporal logic designed for classifying the time-dependent signals originating from continuous-state or hybrid-state dynamical systems according to formal specifications. It has been conceived as a tool for systematizing the monitoring of cyber-physical systems, supporting the automatic translation of complex safety specifications into monitoring algorithms, faithfully representing their semantics. Almost all algorithms hitherto suggested do, however, assume perfect identity between the sensor readings, informing the monitor about the system state and the actual ground truth. Only recently have Visconti et al. addressed the issue of inexact measurements, taking up the simple model of interval-bounded per-sample error that is unrelated, in the sense of chosen afresh, across samples. We expand their analysis by decomposing the error into an unknown yet fixed offset and an independent per-sample error and show that in this setting, monitoring of temporal properties no longer coincides with collecting Boolean combinations of state predicates evaluated in each time instant over best-possible per-sample state estimates, but can be genuinely more informative in that it infers determinate truth values for monitoring conditions that interval-based evaluation remains inconclusive about. For the model-free as well as for the linear model-based case, we provide optimal evaluation algorithms based on affine arithmetic and SAT modulo theory, solving over linear arithmetic. The resulting algorithms provide conclusive monitoring verdicts in many cases where state estimations inherently remain inconclusive. In their model-based variants, they can simultaneously address the issues of uncertain sensing and partial observation.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference31 articles.

1. From Safety Requirements to Safety Monitors—Automatic Synthesis in Compliance with ISO 26262;Holberg,2012

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3