Combinatorial Integral Approximation Decompositions for Mixed-Integer Optimal Control

Author:

Zeile ClemensORCID,Weber Tobias,Sager SebastianORCID

Abstract

Solving mixed-integer nonlinear programs (MINLPs) is hard from both a theoretical and practical perspective. Decomposing the nonlinear and the integer part is promising from a computational point of view. In general, however, no bounds on the objective value gap can be established and iterative procedures with potentially many subproblems are necessary. The situation is different for mixed-integer optimal control problems with binary variables that switch over time. Here, a priori bounds were derived for a decomposition into one continuous nonlinear control problem and one mixed-integer linear program, the combinatorial integral approximation (CIA) problem. In this article, we generalize and extend the decomposition idea. First, we derive different decompositions and analyze the implied a priori bounds. Second, we propose several strategies to recombine promising candidate solutions for the binary control functions in the original problem. We present the extensions for ordinary differential equations-constrained problems. These extensions are transferable in a straightforward way, though, to recently suggested variants for certain partial differential equations, for algebraic equations, for additional combinatorial constraints, and for discrete time problems. We implemented all algorithms and subproblems in AMPL for a proof-of-concept study. Numerical results show the improvement compared to the standard CIA decomposition with respect to objective function value and compared to general-purpose MINLP solvers with respect to runtime.

Funder

European Research Council

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference56 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3