Abstract
Existing person re-recognition (Re-ID) methods usually suffer from poor generalization capability and over-fitting problems caused by insufficient training samples. We find that high-level attributes, semantic information, and part-based local information alignment are useful for person Re-ID networks. In this study, we propose a person re-recognition network with part-based attribute-enhanced features. The model includes a multi-task learning module, local information alignment module, and global information learning module. The ResNet based on non-local and instance batch normalization (IBN) learns more discriminative feature representations. The multi-task module, local module, and global module are used in parallel for feature extraction. To better prevent over-fitting, the local information alignment module transforms pedestrian attitude alignment into local information alignment to assist in attribute recognition. Extensive experiments are carried out on the Market-1501 and DukeMTMC-reID datasets, whose results demonstrate that the effectiveness of the method is superior to most current algorithms.
Funder
National Natural Science Foundation of China
Subject
Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science