Affiliation:
1. Iran Polymer and Petrochemical Institute (IPPI), Tehran 14965/115, Iran
2. Research & Development Center, Kermanshah Polymer Company, Kermanshah 14965/115, Iran
3. Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/ Maria Aurèlia Capmany 69, 17003 Girona, Spain
Abstract
The aim of this work is to investigate the influence of the ethanol content of adducts on the catalytic behavior of related Ziegler–Natta (ZN) catalysts in propylene homo- and copolymerizations (with 1-hexene comonomer) in terms of activity, isotacticity, H2 response, and comonomer incorporation. For this purpose, three MgCl2.nEtOH adducts with n values of 0.7, 1.2, and 2.8 were synthesized and used in the synthesis of related ZN catalysts. The catalysts were thoroughly characterized using XRD, BET, SEM, EDX, N2 adsorption–desorption, and DFT techniques. Additionally, the microstructure of the synthesized (co)polymers was distinguished via DSC, SSA, and TREF techniques. Their activity was found to enhance with the adduct’s ethanol content in both homo- and copolymerization experiments, and the increase was more pronounced in homopolymerization reactions in the absence of H2. Furthermore, the catalyst with the highest ethanol content provided a copolymer with a lower isotacticity index, a shorter meso sequence length, and a more uniform distribution of comonomer within the chains. These results were attributed to the higher total surface area and Ti content of the corresponding catalyst, as well as its lower average pore diameter, a larger proportion of large pores compared to the other two catalysts, and its spherical open bud morphology. It affirms the importance of catalyst/support ethanol-content control during the preparation process. Then, molecular simulation was employed to shed light on the iso-specificity of the polypropylene produced via synthesized catalysts.
Funder
Spanish Ministerio de Ciencia e Innovación
Generalitat de Catalunya
Iran National Science Foundation
Marie Curie fellowship
Subject
Polymers and Plastics,General Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献