Research on Resilient Modulus Prediction Model and Equivalence Analysis for Polymer Reinforced Subgrade Soil under Dry–Wet Cycle

Author:

Luan Yingcheng12,Lu Wei1,Fu Kun2

Affiliation:

1. Research Center of Geotechnical and Structural Engineering, Shandong University, Jinan 250061, China

2. School of Transportation, Southeast University, 2# Southeast University Road, Jiangning District, Nanjing 210096, China

Abstract

The subgrade soil of asphalt pavement is significantly susceptible to changes in moisture content, and therefore many projects introduce polymer-based reinforcement to ensure soil performance. This paper aims to incorporate a variable representing the dry–wet cycle into the prediction model of resilient modulus of polymer reinforced soil. The polymer adopted is a self-developed subgrade soil solidification material consisting of sodium dodecyl sulfate and polyvinyl oxide. The current resilient modulus prediction model is improved, notably involving the effects of the dry–wet cycle. Combined with finite element method (FEM) analysis, the actual stress state of pavement and the coupling effect of dry–wet cycle and vehicle load on the resilient modulus are studied. The deterioration in resilient modulus with the variation in seasonal climate and load response is also investigated. Results show that the deviator stress is negatively correlated with the resilient modulus while the bulk stress has a linearly positive relation. The decreasing rate at low deviator stress is larger than that at the high level. Moreover, the dry–wet cycle can reduce the resilient modulus and the reducing amplitude is the largest at the first dry–wet cycle. FEM analysis shows that the middle position of the subgrade slope has the largest initial resilient modulus with decreasing amplitude in the first year of dry–wet cycles, while the upper position shows a smaller change. The variation in resilient modulus is closely related to the changes in cumulative volumetric water content. Considering that different positions of subgrade bear the external vehicle load, the equivalent resilient modulus is more realistic for guiding the subgrade design.

Funder

China Postdoctoral Science Foundation

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference42 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3