Boosted Chemical Protective Properties Using Interface Constructed between Ti3C2Tx MXene and Natural Rubber

Author:

Chen Qinyu1,Zhang Min1,Li Xiaopeng1,Zhou Chuan1,Yang Guang1,Li Heguo1,Zheng Xiaohui1

Affiliation:

1. State Key Laboratory of NBC Protection for Civilian, Beijing 100191, China

Abstract

Rubbers are extensively applied in chemical protective clothing (CPC) due to their eye-catching anti-penetration of chemicals. However, their impermeability, particularly that of natural rubber (NR), is unsatisfactory. In this work, we demonstrate the facile construction of Ti3C2Tx MXene/NR interface using a plant-scale and feasible method combining latex mixing, emulsion flocculation, and flat-plate vulcanisation. The above crafts achieved a homogeneous dispersion of Ti3C2Tx MXene in the NR matrix in a single layer, thereby constructing a strong interfacial interaction between Ti3C2Tx MXene and NR, which induced the formation of a robust three-dimensional (3D) network in the composite. The anti-swelling capacity of the 3D cross-linked network structure and the layered structure of Ti3C2Tx MXene effectively prolonged the permeation path of toxic chemicals. Compared with pure NR, the nanocomposite with 1 wt% of Ti3C2Tx MXene showed substantially enhanced breakthrough times of toluene, dichloromethane, and concentrated sulfuric acid (increased by 140%, 178.6%, and 92.5%, respectively). Furthermore, its tensile strength, elongation at break, and shore hardness increased by 7.847 MPa, 194%, and 12 HA, respectively. Taken together with the satisfactory anti-permeability, tensile strength, elongation at break, and shore hardness, the resulting Ti3C2Tx MXene/NR nanocomposites hold promise for application to long-term and high-strength CPC in the chemical industry and military fields.

Funder

National Natural Science Foundation of China

State Key Laboratory of NBC Protection for Civilian Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3