Porous Poly(2-hydroxyethyl methacrylate) Hydrogel Scaffolds for Tissue Engineering: Influence of Crosslinking Systems and Silk Sericin Concentration on Scaffold Properties

Author:

Tuancharoensri Nantaprapa1,Sonjan Sukhonthamat1,Promkrainit Sudarat1,Daengmankhong Jinjutha1ORCID,Phimnuan Preeyawass2,Mahasaranon Sararat13,Jongjitwimol Jirapas34ORCID,Charoensit Pensri2,Ross Gareth M.13ORCID,Viennet Céline5,Viyoch Jarupa2,Ross Sukunya13ORCID

Affiliation:

1. Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand

2. Department of Pharmaceutical Technology, Center of Excellence for Innovation in Chemistry, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand

3. Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand

4. Biomedical Sciences Program, Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand

5. UMR 1098 RIGHT INSERM EFS FC, DImaCell Imaging Resource Center, University of Franche-Comté, 25000 Besançon, France

Abstract

Tailored porous structures of poly(2-hydroxyethyl methacrylate) (PHEMA) and silk sericin (SS) were used to create porous hydrogel scaffolds using two distinct crosslinking systems. These structures were designed to closely mimic the porous nature of the native extracellular matrix. Conventional free radical polymerization of 2-hydroxyethyl methacrylate (HEMA) was performed in the presence of different concentrations of SS (1.25, 2.50, 5.00% w/v) with two crosslinking systems. A chemical crosslinking system with N’N-methylene bisacrylamide (MBAAm) and a physical crosslinking system with dimethylurea (DMU) were used: C-PHEMA/SS (crosslinked using MBAAm) and C-PHEMA/pC-SS (crosslinked using MBAAm and DMU). The focus of this study was on investigating the impact of these crosslinking methods on various properties of the scaffolds, including pore size, pore characteristics, polymerization time, morphology, molecular interaction, in vitro degradation, thermal properties, and in vitro cytotoxicity. The various crosslinked networks were found to appreciably influence the properties of the scaffolds, especially the pore sizes, in which smaller sizes and higher numbers of pores with high regularity were seen in C-PHEMA/1.25 pC-SS (17 ± 2 μm) than in C-PHEMA/1.25 SS (34 ± 3 μm). Semi-interpenetrating networks were created by crosslinking PHEMA-MBAAm-PHEMA while incorporating free protein molecules of SS within the networks. The additional crosslinking step involving DMU occurred through hydrogen bonding of the -C=O and -N-H groups with the SS, resulting in the simultaneous incorporation of DMU and SS within the PHEMA networks. As a consequence of this process, the scaffold C-PHEMA/pC-SS exhibited smaller pore sizes compared to scaffolds without DMU crosslinking. Moreover, the incorporation of higher loadings of SS led to even smaller pore sizes. Additionally, the gelation time of C-PHEMA/pC-SS was delayed due to the presence of DMU in the crosslinking system. Both porous hydrogel scaffolds, C-PHEMA/pC-SS and PHEMA, were found to be non-cytotoxic to the normal human skin dermal fibroblast cell line (NHDF cells). This promising result indicates that these hydrogel scaffolds have potential for use in tissue engineering applications.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3