Development and Characterization of Thermoresponsive Smart Self-Adaptive Chitosan-Based Polymer for Wellbore Plugging

Author:

Wu Huimei12,Lou Yishan12,Li Zhonghui12,Zhai Xiaopeng12ORCID,Gao Fei12

Affiliation:

1. National Engineering Research Center for Oil & Gas Drilling and Completion Technology, Yangtze University, Wuhan 430100, China

2. Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Wuhan 430100, China

Abstract

To meet the escalating demand for oil and gas exploration in microporous reservoirs, it has become increasingly crucial to develop high-performance plugging materials. Through free radical grafting polymerization technology, a carboxymethyl chitosan grafted poly (oligoethylene glycol) methyl ether methyl methacrylate acrylic acid copolymer (CCMMA) was successfully synthesized. The resulting CCMMA exhibited thermoresponsive self-assembling behavior. When the temperature was above its lower critical solution temperature (LCST), the nanomicelles began to aggregate, forming mesoporous aggregated structures. Additionally, the electrostatic repulsion of AA chains increased the value of LCST. By precisely adjusting the content of AA, the LCST of CCMMA could be raised from 84.7 to 122.9 °C. The rheology and filtration experiments revealed that when the temperature surpassed the switching point, CCMMA exhibited a noteworthy plugging effect on low-permeability cores. Furthermore, it could be partially released as the temperature decreased, exhibiting temperature-switchable and self-adaptive plugging properties. Meanwhile, CCMMA aggregates retained their reversibility, along with thermal thickening behavior in the pores. However, more detailed experiments and analysis are needed to validate these claims, such as a comprehensive study of the CCMMA copolymer’s physical properties, its interaction with the reservoir environment, and its performance under various conditions. Additionally, further studies are required to optimize its synthesis process and improve its efficiency as a plugging material for oil and gas recovery in microporous reservoirs.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3