Enhancing Stiffness and Oil Resistance of Fluorosilicone Rubber Composites through Untreated Cellulose Reinforcement

Author:

Park Ye-Won1,Yoon Jeong-Hwan1ORCID,Shin Kyoung-Ho1,Cho Yeon-Jee1,Yun Ju-Ho1,Han Won-Hee2,Hong Min-Hyuk2,Kang Dong-Gug3,Kim Hye-Young3

Affiliation:

1. Chemical Materials R&D Department, Chassis & Material Research Laboratory, Korea Automotive Technology Institute, 303 Pungse-ro, Pungse-myeon, Dongnam-gu, Cheonan-si 31214, Chungnam, Republic of Korea

2. R&D Centre, Lion Advanced Materials Inc., 87 Beotkkot-gil, Daedeok-gu, Daejeon 34342, Republic of Korea

3. Research & Development Institute, Pyung Hwa Oil Seal Industry Co., Ltd., 42 Nongongjungang-ro 51-gil, Nongong-eup, Dalseong-gun, Daegu 42982, Republic of Korea

Abstract

Fluorosilicone rubber, essential in automotive and aerospace owing to its excellent chemical resistance, plays a pivotal role in sealing technology, addressing the industry’s evolving demands. This study explores the preparation and properties of fibrillated cellulose-reinforced fluorosilicone rubber composites to enhance their stiffness and oil resistance. Fibrillated cellulose sourced as a wet cake and subjected to processing and modification is incorporated into a fluorosilicone rubber matrix. The resulting composites are analysed by tensile and compression tests, along with compressive stress-relaxation testing in air and in an oil-immersed environment. The findings demonstrate significant improvements in the mechanical properties, including an increased Young’s modulus and elongation at break, whereas the tensile strength remained uncompromised throughout the testing procedures. Morphological analysis of the fracture surfaces revealed a remarkable interfacial affinity between the fibrillated cellulose and rubber matrix, which was attributed in part to the modified fatty acids and inorganic nanoparticles. The presence of fibrillated cellulose enhanced the stress-relaxation characteristics under oil-immersion conditions. These results contribute to the domain of advanced elastomer materials, with potential for applications requiring enhanced mechanical properties and superior oil resistance.

Funder

Ministry of Trade, Industry, and Energy of the South Korean government

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3