3D-Printed Filters for Efficient Heavy Metal Removal from Water Using PLA@CS/HAP Composites

Author:

Wang Yisu1,Wang Yan1,Qiu Shuai1,Wang Chongyang1,Zhang Hong1,Guo Jing1,Wang Shengfa2,Ma Huixia3

Affiliation:

1. School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China

2. DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian 116620, China

3. Dalian Research Institute of Petroleum and Petrochemicals, Sinopec, Dalian 116045, China

Abstract

Chitosan/Hydroxyapatite composites, enriched with relatively active -NH2 and -OH groups, have emerged as promising adsorbents for heavy metal removal. In this study, we harnessed the potential of CS/HAP composites by developing monolithic PLA@CS/HAP filters utilizing 3D printing and freeze-drying techniques. These filters possess both macroscopic and microscopic porous structures, endowing them with exceptional capabilities for removing heavy metals from water. The adsorption properties of CS/HAP composites were explored by varying the dosage, duration, and initial concentrations of copper ions. The maximum adsorption capacity for Cu2+ was determined to be approximately 119+/−1 mg/g at the natural pH and 298 K. Notably, the monolithic PLA@CS/HAP filters demonstrated remarkable efficiency in the removal of copper ions, with 90% of copper ions effectively removed within a mere 2-h period in a cyclic adsorption experiment. Furthermore, the PLA@CS/HAP filters exhibited a robust dynamic Cu2+ removal capacity (80.8% or even better in less than 35 min) in a dynamic adsorption experiment. Importantly, all materials employed in this study were environmentally friendly. In summary, the PLA@CS/HAP filter offers advantages such as ease of preparation, eco-friendliness, versatility, and broad applicability in diverse wastewater treatment scenarios, thereby presenting a significant potential for practical implementation.

Funder

National Natural Science Foundation of China

Opening Project of State Key Laboratory of Polymer Materials Engineering

Project of Liaoning Provincial Education Department

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3