Affiliation:
1. Faculty of Engineering, Tohoku Gakuin University, Sendai 984-8588, Japan
Abstract
Halocynthia roretzi, a member of Ascidiacea, is covered with its own tunic, which is composed of polysaccharides, such as cellulose Iβ and sulfated chitin. H. roretzi has an open-vessel system, whose blood vessels and hemocytes are found in the tunic, so that the mechanical environment of the tunic could be carefully controlled because of its influence on hemocyte behaviors. While active deformation of the tunic and related phenomena have been previously reported, the mechanical environment in the tunic, which directly influences its deformation, has been rarely investigated. Meanwhile, the developments of actuators based on cellulose and chitin have been frequently reported. However, a cellulose–sulfated chitin actuator has not been proposed. In this study, the mechanical environment of the tunic, which has been rarely investigated despite its importance in the active deformation of the tunic, was evaluated using finite element analysis. A finite element model of the tunic, based on its histological characteristics as well as deformation patterns, was developed. The results showed that the shape of the tunic, the pattern of fiber distribution, and control of the water content influenced the mechanical environment.
Subject
Polymers and Plastics,General Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献