Infrastructure in the Age of Pandemics: Utilizing Polypropylene-Based Mask Waste for Durable and Sustainable Road Pavements

Author:

Nciri Nader12ORCID,Kim Namho1ORCID

Affiliation:

1. School of Industrial Design & Architectural Engineering, Korea University of Technology & Education, 1600 Chungjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan 31253, Chungnam, Republic of Korea

2. School of Energy, Materials & Chemical Engineering, Korea University of Technology & Education, 1600 Chungjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan 31253, Chungnam, Republic of Korea

Abstract

When navigating the environmental exigencies precipitated by global pandemics, the escalation of mask waste presents a multifaceted dilemma. In this avant-garde research, we unveil a novel approach: harnessing the sterilized shredded mask residues (SMRs), predominantly composed of 100 wt. % polypropylene, as pioneering modifiers for asphalt. Distinct proportions of SMR (e.g., 3, 6, and 9 wt. %) were judiciously integrated with fresh–virgin base AP-5 asphalt and subjected to an extensive suite of state-of-the-art examinations, encompassing thin-layer chromatography-flame ionization detection (TLC-FID), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and specific rheological metrics. The TLC-FID diagnostic trajectories highlighted the nuanced rejuvenating influence of SMR on the binder, a facet reinforced by a pronounced elevation in the thermodynamic stability index (IC). The FT-IR spectra elucidated SMR’s preeminent role as a filler, negating notions of chemical reactivity. The TGA analyses unveiled an elevated thermal onset of degradation, signposting enhanced thermal resilience, whereas the DSC readings illuminated a superior thermal comportment at lower extremities. The SEM evaluations rendered a clearer panorama: there was heightened textural perturbation at escalated SMR incorporations, yet the 3 wt. % concoction showcased an optimal, coherent microtexture symbiosis with asphalt. The rheological scrutinies revealed a systematic trajectory: a diminishing penetration and ductility countered by ascending softening points and viscosity metrics. The coup de maître stemmed from the DSR analyses, unequivocally validating SMR’s unparalleled prowess in curtailing rutting distress. This seminal inquiry not only posits a blueprint for refined pavement longevity but also champions a sustainable countermeasure to pandemic-propelled waste, epitomizing the confluence of environmental prudence an d infrastructural fortitude.

Funder

Korea Agency for Infrastructure Technology Advancement

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference102 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3