Mechanism and Influence of Dispersants on the Action of Polymer Flocculants Used in Slurry Separation

Author:

Ren Guoping1,Zhang Jian1ORCID,Feng Tugen1,Liang Yu23ORCID,Yin Yihao4

Affiliation:

1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, No. 1 Xikang Road, Nanjing 210024, China

2. Shenzhen Campus, Sun Yat-sen University, No. 66 Gongchang Road, Shenzhen 518107, China

3. School of Civil Engineering, Sun Yat-sen University, No. 2 Daxue Road, Zhuhai 528478, China

4. China Railway 14th Bureau Group Da Shield Engineering Company Limited, Nanjing 211800, China

Abstract

The application of polymer flocculants plays a pivotal role in the slurry separation process of shields, and the dispersant used for treating cutter mud cakes can significantly impact the effectiveness of polymer flocculants, potentially leading to reduced efficiency in slurry separation. Experiments were conducted to select appropriate flocculants and investigate the influence of dispersants on flocculant effectiveness, aiming to assess the effect of flocculants and explore the relationships and mechanisms governing their influence. Changes in the patterns of slurry flocculation were revealed in terms of flocculation-driven precipitation and vacuum-filtration effects. The purpose of this article is to provide a reference for the field application of polymer flocculants in the shield field. The conclusions are as follows. Inorganic flocculants containing 0.5% polyaluminum chloride (PAC) exhibit the most effective flocculation, demonstrating strong charge neutralization action. Organic flocculants containing 0.1% cationic polyacrylamides (CPAM) exhibit the most effective flocculation, demonstrating strong bridging and net capture effects. The dispersant sodium hexametaphosphate (SHMP) can significantly weaken the charge-neutralizing action of flocculants and slightly enhance bridging and net capture effects. SHMP can impede the flocculation of slurry with PAC. For CPAM, SHMP can enhance the flocculation of slurry at a low mass fraction (0.1% and 0.3%), while SHMP can significantly hinder flocculation at a high mass fraction (0.5% and 1%). A low mass fraction of SHMP reduced slurry viscosity to 246.3 mPa.s and enhanced vacuum filtration, while a high mass fraction of SHMP increased slurry viscosity to 667.2 mPa.s and hindered vacuum filtration. In conclusion, while dispersants reduce the effectiveness of inorganic flocculants at any mass fraction, a small number of dispersants enhances the performance of organic flocculants; thus, the organic flocculant CPAM is recommended for slurry separation.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Sustainable Development Project of Shenzhen Natural Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3