Self-Rotation of Electrothermally Responsive Liquid Crystal Elastomer-Based Turntable in Steady-State Circuits

Author:

Yuan Zongsong1,Liu Junxiu12ORCID,Qian Guqian1,Dai Yuntong1ORCID,Li Kai12ORCID

Affiliation:

1. College of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China

2. Anhui Province Key Laboratory of Building Structure and Underground Engineering, Anhui Jianzhu University, Hefei 230601, China

Abstract

Self-excited motions, characterized by their ability to harness energy from a consistent environment and self-regulate, exhibit significant potential in micro-devices, autonomous robotics, sensor technology, and energy generation. This study introduces an innovative turntable system based on an electrothermally responsive liquid crystal elastomer (LCE). This system facilitates self-rotation within a steady-state circuit. Employing an electrothermal LCE model, we have modeled and numerically analyzed the nonlinear dynamics of an LCE-rope within steady-state circuits, utilizing the four-order Runge–Kutta method for calculations. The numerical results reveal the emergence of two distinct motion patterns in the turntable system under steady-state conditions: a self-rotation pattern and a static pattern. The self-rotation is initiated when the system’s absorbed energy surpasses the energy lost due to damping effects. Furthermore, this paper delves into the critical conditions necessary for initiating self-rotation and examines the influence of various key dimensionless parameters on the system’s rotation amplitude and frequency. These parameters include gravitational acceleration, the initial position of the mass ball, elastic stiffness of the LCE and spring, limiting temperature, heating zone angle, thermal shrinkage coefficient, and damping factor. Our computational findings establish that these parameters exert a modulatory impact on the rotation amplitude and period. This research enhances the understanding of self-excited motions and offers promising avenues for applications in energy harvesting, monitoring, soft robotics, medical devices, and micro- and nano-devices.

Funder

National Natural Science Foundation of China

University Natural Science Research Project of Anhui Province

Outstanding Talents Cultivation Project of Universities in Anhui

Anhui Provincial Natural Science Foundation

Housing and Urban-Rural Development Science and Technology Project of Anhui Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3