Room-Temperature NH3 Gas Surface Acoustic Wave (SAW) Sensors Based on Graphene/PPy Composite Films Decorated by Au Nanoparticles with ppb Detection Ability

Author:

Shen Chi-Yen1ORCID,Hung Tien-Tsan2ORCID,Chuang Yao-Wei1,Lai Shao-Kai1,Tai Chi-Ming34

Affiliation:

1. Department of Electrical Engineering, I-Shou University, Kaohsiung 84001, Taiwan

2. Department of Chemical Engineering, I-Shou University, Kaohsiung 84001, Taiwan

3. Division of Gastroenterology and Hepatology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan

4. School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan

Abstract

Exhaled human breath analysis has great potential for the diagnosis of diseases in non-invasive way. The 13C-Urea breath test for the diagnosis of Helicobacter pylori infection indicates the ammonia concentration of 50–400 ppb in the breath. This work successfully developed a surface acoustic wave (SAW) resonator based on graphene/polypyrrole composite films decorated by gold nanoparticles (AuNPs–G/PPy) with sensitivity and selectivity to detect ammonia in parts-per-billion concentrations, which is promising for the accurate diagnosis of H. pylori infection. XRD, EDS, and SEM characterized the AuNPs–G/PPy nanocomposites, providing comprehensive insights into their structural, compositional, and morphological properties. The gas-sensing capabilities of the fabricated SAW sensors were extensively investigated, focusing on their response to NH3 gas at ambient temperature. The concentration of ammonia gas was effectively quantified by monitoring the frequency shift of the SAW device. Notably, our developed SAW sensor demonstrated outstanding sensitivity, selectivity, repeatability, and reproducibility for 50–1000 ppb NH3 in dry air. The excellent sensing performance of the AuNPs–G/PPy hybrid composite film can be attributed to the synergistic effects of graphene’s superior conductivity, the catalytic properties of gold nanoparticles, and the conductivity sensitization facilitated by electron-hole recombination on the polypyrrole surface.

Funder

National Science and Technology Council, Taiwan

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3