Recent Advancements in Mechanistic Studies of Palladium- and Nickel-Catalyzed Ethylene Copolymerization with Polar Monomers

Author:

Song Zhihui1,Wang Shaochi2ORCID,Gao Rong1ORCID,Wang Ying1,Gou Qingqiang1,Zheng Gang1,Feng Huasheng3,Fan Guoqiang1,Lai Jingjing1

Affiliation:

1. Department of Polyethylene, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China

2. Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA

3. Department of Catalytic Science, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China

Abstract

The introduction of polar functional groups into polyolefin chain structures creates opportunities to enhance specific properties, such as adhesion, dyeability, printability, compatibility, thermal stability, and electrical conductivity, which widen the range of potential applications for these modified materials. Transition metal catalysts, especially late transition metals, have proven to be highly effective in copolymerization processes due to their reduced Lewis acidity and electrophilicity. However, when compared to the significant progress and summary of synthetic methods, there is a distinct lack of a comprehensive summary of mechanistic studies pertaining to the catalytic systems involved in ethylene copolymerization catalyzed by palladium and nickel catalysts. In this review, we have provided a comprehensive summary of the latest developments in mechanistic studies of ethylene copolymerization with polar monomers catalyzed by late-transition-metal complexes. Experimental and computational methods were employed to conduct a detailed investigation of these organic and organometallic systems. It is mainly focused on ligand substitution, changes in binding modes, ethylene/polar monomer insertion, chelate opening, and β-H elimination. Factors that control the catalytic activity, molecular weight, comonomer incorporation ratios, and branch content are analyzed, these include steric repulsions between ligands and monomers, electronic effects arising from both ligands and monomers, and so on.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference82 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3