Ionizing Radiation Synthesis of Hydrogel Nanoparticles of Gelatin and Polyethylene Glycol at High Temperature

Author:

Takinami Patricia Y. I.1,Mastro Nelida L. del1ORCID,Ashfaq Aiysha2ORCID,Al-Sheikhly Mohamad3ORCID

Affiliation:

1. Center of Radiation Technology, Institute of Energy and Radiation Research-IPEN/CNEN, Av. Prof. Lineu Prestes, 2242, Cidade Universitária, Sao Paulo 05508-910, Brazil

2. Department of Chemistry and Biochemistry, University of Maryland College Park, College Park, MD 20742, USA

3. Department of Materials Science and Engineering, University of Maryland College Park, College Park, MD 20742, USA

Abstract

Nanohydrogel particles of polyethylene glycol (PEG), gelatin (GEL), and PEG–GEL mixtures (MIXs) were synthesized with a high electron beam and 60Co gamma-ray radiation. The relatively novel technique of Asymmetrical Flow Field Flow Fractionation (AF4 or AFFFF) coupled to a Multi-Angle Laser Light Scattering (MALLS) detector was mainly used to determine the hydrodynamic diameter (Dh) of the radiation-synthesized PEG, GEL, and PEG–GEL nanohydrogel particles. Our approach to achieving nanohydrogel particles is to enhance the intracrosslinking reactions and decrease the intercrosslinking reactions of the C-centered radicals of the PEG and GEL. The intracrosslinking reactions of these free radicals were enhanced via irradiation at temperatures of 77–80 °C and using a high dose rate and pulsed irradiation. The shorter average distance between the C-centered free radicals on the backbone of the thermally collapsed PEG and GEL chain, due to the destruction of hydrogen bonds, enhances the intracrosslinking reactions. It was observed that increasing the dose and dose rate decreased the Dh. DLS results lined up with AF4 measurements. This study provides researchers with a clean method to produce GEL–PEG hydrogels without the use of toxic reagents. Particle size can be tuned with dose, dose rate, and temperature as demonstrated in this work. This is ideal for medical applications as the use of ionizing radiation eliminates toxicity concerns and provides simultaneous sterilization of the material.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3