Alginate Modified Magnetic Polypyrrole Nanocomposite for the Adsorptive Removal of Heavy Metal

Author:

Mashkoor Fouzia1,Shoeb Mohd1,Jeong Changyoon1ORCID

Affiliation:

1. School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

Abstract

The presence of heavy metals with high acute toxicity in wastewater poses a substantial risk to both the environment and human health. To address this issue, we developed a nanocomposite of alginate-encapsulated polypyrrole (PPy) decorated with α-Fe2O3 nanoparticles (Alg@Mag/PPy NCs), fabricated for the removal of mercury(II) from synthetic wastewater. In the adsorption experiments, various parameters were examined to identify the ideal conditions. These parameters included temperature (ranging from 298 to 323 K), initial pH levels (ranging from two to nine), interaction time, amount of adsorbent (from 8 to 80 mg/40 mL), and initial concentrations (from 10 to 200 mg/L). The results of these studies demonstrated that the removal efficiency of mercury(II) was obtained to be 95.58% at the optimum pH of 7 and a temperature of 303 K. The analysis of adsorption kinetics demonstrated that the removal of mercury(II) adhered closely to the pseudo-second-order model. Additionally, it displayed a three-stage intraparticle diffusion model throughout the entire adsorption process. The Langmuir model most accurately represented equilibrium data. The Alg@Mag/PPy NCs exhibited an estimated maximum adsorption capacity of 213.72 mg/g at 303 K, surpassing the capacities of most of the other polymer-based adsorbents previously reported. The thermodynamic analysis indicates that the removal of mercury(II) from the Alg@Mag/PPy NCs was endothermic and spontaneous in nature. In summary, this study suggests that Alg@Mag/PPy NCs could serve as a promising choice for confiscating toxic heavy metal ions from wastewater through adsorption.

Funder

National Research Foundation of Korea

Core Research Support Center for Natural Products and Medical Materials

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3