Analyzing Temperature Distribution Patterns on the Facing and Backside Surface: Investigating Combustion Performance of Flame-Retardant Particle Boards Using Aluminum Hypophosphite, Intumescent, and Magnesium Hydroxide Flame Retardants

Author:

Pan Fangya1,Jia Hongyu1,Huang Yuxiang1ORCID,Chen Zhilin12ORCID,Liang Shanqing1,Jiang Peng1ORCID

Affiliation:

1. Research Institute of Wood Industry, Chinese Academy of Forestry, Haidian District, Beijing 100091, China

2. Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China

Abstract

Particle boards are manufactured through a hot pressing process using wood materials (natural polymer materials) and adhesive, which find common usage in indoor decorative finishing materials. Flame-retardant particleboard, crucial for fire safety in such applications, undergoes performance analysis that includes assessing temperature distribution across its facing surface and temperature increase on the backside surface during facade combustion, yielding critical insights into fire scenario development. In this study, a compact flame spread apparatus is utilized to examine the flame retardancy and combustion behavior of particle boards, with a specific emphasis on the application of cost-effective flame retardants, encompassing aluminum hypophosphite (ALHP), an intumescent flame retardant (IFR) comprising ammonium polyphosphate (APP), melamine (MEL), and Dipentaerythritol (DPE), alongside magnesium hydroxide (MDH), and their associated combustion characteristics. The D300°C values, representing the vertical distance from the ignition point (IP) to P300°C (the temperature point at 300 °C farthest from IP), are measured using a compact temperature distribution measurement platform. For MDH/PB, APP + MEL + DPE/PB, and ALHP/PB samples, the respective D300°C values of 145.79 mm, 117.81 mm, and 118.57 mm indicate reductions of 11.11%, 28.17%, and 27.71%, compared to the untreated sample’s value of 164.02 mm. The particle boards treated with ALHP, IFR, and MDH demonstrated distinct flame-retardant mechanisms. MDH/PB relied on the thermal decomposition of MDH to produce MgO and H2O for flame retardancy, while APP + MEL + DPE/PB achieved flame retardancy through a cross-linked structure with char expansion, polyphosphate, and pyrophosphate during combustion. On the other hand, ALHP/PB attained flame retardancy by reacting with wood materials and adhesives, forming a stable condensed P-N-C structure. This study serves as a performance reference for the production of cost-effective flame-resistant particleboards and offers a practical method for assessing its fire-resistant properties when used as a decorative finishing material on facades in real fire situations.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference49 articles.

1. Manufacture of all-wood sawdust-based particle board using ionic liquid-facilitated fusion proces;Orelma;Wood Sci. Technol.,2021

2. Powder coating of veneered particle board surfaces by hot pressing;Badila;Prog. Org. Coat.,2014

3. Tang, Y. (2007). Study on the Formaldehyde-Free Flame Retardant Wood Particleboard and Its Adhesive. [Master’s Thesis, Sichuan University].

4. A facile preparation of environmentally-benign and flame-retardant coating on wood by comprising polysilicate and boric acid;Wang;Cellulose,2021

5. Qian, L.J. (2021). Modern Flame Retardant Materials and Technology, Chemical Industry Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3