Development of Poly(vinyl alcohol) Grafted Glycidyl Methacrylate/Cellulose Nanofiber Injectable Hydrogels for Meniscus Tissue Engineering

Author:

Sinna Jiraporn12,Jeencham Rachasit1,Mueangkhot Priyapat2,Sophon Sorasak2,Noralak Pornpattara2,Raksapakdee Romtira2,Numpaisal Piya-on13ORCID,Ruksakulpiwat Yupaporn12ORCID

Affiliation:

1. Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand

2. School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand

3. School of Orthopaedics, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand

Abstract

This study aimed to develop poly (vinyl alcohol) grafted glycidyl methacrylate/cellulose nanofiber (PVA-g-GMA/CNF) injectable hydrogels for meniscus tissue engineering. PVA-g-GMA is an interesting polymer for preparing cross-linking injectable hydrogels with UV radiation, but it has poor mechanical properties and low cell proliferation. In this study, CNF as a reinforcing agent was selected to improve mechanical properties and cell proliferation in PVA-g-GMA injectable hydro-gels. The effect of CNF concentration on hydrogel properties was investigated. Both PVA-g-GMA and PVA-g-GMA hydrogels incorporating 0.3, 0.5, and 0.7% (w/v) CNF can be formed by UV curing at a wavelength of 365 nm, 6 mW/cm2 for 10 min. All hydrogels showed substantial microporosity with interconnected tunnels, and a pore size diameter range of 3–68 µm. In addition, all hydrogels also showed high physicochemical properties, a gel fraction of 81–82%, porosity of 83–94%, water content of 73–87%, and water swelling of 272–652%. The water content and swelling of hydrogels were increased when CNF concentration increased. It is worth noting that the reduction of porosity in the hydrogels occurred with increasing CNF concentration. With increasing CNF concentration from 0.3% to 0.7% (w/v), the compressive strength and compressive modulus of the hydrogels significantly increased from 23 kPa to 127 kPa and 27 kPa to 130 kPa, respectively. All of the hydrogels were seeded with human cartilage stem/progenitor cells (CSPCs) and cultured for 14 days. PVA-g-GMA hydrogels incorporating 0.5% and 0.7% (w/v) CNF demonstrated a higher cell proliferation rate than PVA-g-GMA and PVA-g-GMA hydrogels incorporating 0.3% (w/v) CNF, as confirmed by MTT assay. At optimum formulation, 10%PVA-g-GMA/0.7%CNF injectable hydrogel met tissue engineering requirements, which showed excellent properties and significantly promoted cell proliferation, and has a great potential for meniscus tissue engineering application.

Funder

Suranaree University of Technology Research and Development Found

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3