A Poly-D-lysine-Coated Coralline Matrix Promotes Hippocampal Neural Precursor Cells’ Differentiation into GFAP-Positive Astrocytes

Author:

Hendler Roni Mina1,Weiss Orly Eva1,Morad Tzachy1,Sion Guy12ORCID,Kirby Michael13ORCID,Dubinsky Zvy4,Barbora Ayan5,Minnes Refael5ORCID,Baranes Danny13ORCID

Affiliation:

1. Department of Molecular Biology, Ariel University, Ariel 4070000, Israel

2. Department of Science, The David Yellin Academic College of Education, Jerusalem 9103501, Israel

3. Adelson School of Medicine, Ariel University, Ariel 4070000, Israel

4. The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel

5. Department of Physics, Ariel University, Ariel 4070000, Israel

Abstract

A major goal of regenerative medicine of the central nervous system is to accelerate the regeneration of nerve tissue, where astrocytes, despite their positive and negative roles, play a critical role. Thus, scaffolds capable of producing astrocytes from neural precursor cells (NPCs) are most desirable. Our study shows that NPCs are converted into reactive astrocytes upon cultivation on coralline-derived calcium carbonate coated with poly-D-lysine (PDL-CS). As shown via nuclei staining, the adhesion of neurospheres containing hundreds of hippocampal neural cells to PDL-CS resulted in disaggregation of the cell cluster as well as the radial migration of dozens of cells away from the neurosphere core. Migrating cells per neurosphere averaged 100 on PDL-CS, significantly higher than on uncoated CS (28), PDL-coated glass (65), or uncoated glass (20). After 3 days of culture on PDL-CS, cell migration plateaued and remained stable for four more days. In addition, NPCs expressing nestin underwent continuous morphological changes from round to spiky, extending and elongating their processes, resembling activated astrocytes. The extension of the process increased continuously during the maturation of the culture and doubled after 7 days compared to day 1, whereas bifurcation increased by twofold during the first 3 days before plateauing. In addition, nestin positive cells’ shape, measured through the opposite circularity level correlation, decreased approximately twofold after three days, indicating spiky transformation. Moreover, nestin-positive cells co-expressing GFAP increased by 2.2 from day 1 to 7, reaching 40% of the NPC population on day 7. In this way, PDL-CS promotes NPC differentiation into reactive astrocytes, which could accelerate the repair of neural tissue.

Funder

Israeli Innovation Authority

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3