Affiliation:
1. Polymers and Advanced Materials Group (PIMA), Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castelló, Spain
2. CEBIMAT Lab S.L., Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castelló, Spain
3. School of Engineering, Science and Technology, Valencian International University (VIU), 46002 Valencia, Spain
Abstract
Biocircularity could play a key role in the circular economy, particularly in applications where organic recycling (composting) has the potential to become a preferred waste management option, such as food packaging. The development of fully biobased and biodegradable composites could help reduce plastic waste and valorize agro-based residues. In this study, extruded films made of composites of polyhydroxybutyrate-co-valerate (PHBV) and lignocellulosic fibers, namely almond shell (AS) and Oryzite® (OR), a polymer hybrid composite precursor, have been investigated. Scanning electron microscopy (SEM) analysis revealed a weak fiber–matrix interfacial interaction, although OR composites present a better distribution of the fiber and a virtually lower presence of “pull-out”. Thermogravimetric analysis showed that the presence of fibers reduced the onset and maximum degradation temperatures of PHBV, with a greater reduction observed with higher fiber content. The addition of fibers also affected the melting behavior and crystallinity of PHBV, particularly with OR addition, showing a decrease in crystallinity, melting, and crystallization temperatures as fiber content increased. The mechanical behavior of composites varied with fiber type and concentration. While the incorporation of AS results in a reduction in all mechanical parameters, the addition of OR leads to a slight improvement in elongation at break. The addition of fibers improved the thermoformability of PHBV. In the case of AS, the improvement in the processing window was achieved at lower fiber contents, while in the case of OR, the improvement was observed at a fiber content of 20%. Biodisintegration tests showed that the presence of fibers promoted the degradation of the composites, with higher fiber concentrations leading to faster degradation. Indeed, the time of complete biodisintegration was reduced by approximately 30% in the composites with 20% and 30% AS.
Subject
Polymers and Plastics,General Chemistry
Reference80 articles.
1. A Review on European Union’s Strategy for Plastics in a Circular Economy and Its Impact on Food Safety;Matthews;J. Clean. Prod.,2021
2. Evaluating Scenarios toward Zero Plastic Pollution;Lau;Science,2020
3. Burlizzi, V. (2019). The Circular Economy Challenges, Opportunities and Pathways for European Businesses. Final Rep. Eurochambres, 1–48. Available online: https://circulareconomy.europa.eu/platform/en/knowledge/circular-economy-challenges-opportunities-and-pathways-european-businesses.
4. A Review on Thermal and Catalytic Pyrolysis of Plastic Solid Waste (PSW);Antelava;J. Environ. Manag.,2017
5. Upcycling and Catalytic Degradation of Plastic Wastes;Hou;Cell Rep. Phys. Sci.,2021
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献