Self-Sustained Chaotic Jumping of Liquid Crystal Elastomer Balloon under Steady Illumination

Author:

Sun Xin1,Dai Yuntong1ORCID,Li Kai1ORCID,Xu Peibao1ORCID

Affiliation:

1. Department of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China

Abstract

Self-sustained chaotic jumping systems composed of active materials are characterized by their ability to maintain motion through drawing energy from the steady external environment, holding significant promise in actuators, medical devices, biomimetic robots, and other fields. In this paper, an innovative light-powered self-sustained chaotic jumping system is proposed, which comprises a liquid crystal elastomer (LCE) balloon and an elastic substrate. The corresponding theoretical model is developed by combining the dynamic constitutive model of an LCE with Hertz contact theory. Under steady illumination, the stationary LCE balloon experiences contraction and expansion, and through the work of contact expansion between LCE balloon and elastic substrate, it ultimately jumps up from the elastic substrate, achieving self-sustained jumping. Numerical calculations reveal that the LCE balloon exhibits periodic jumping and chaotic jumping under steady illumination. Moreover, we reveal the mechanism underlying self-sustained periodic jumping of the balloon in which the damping dissipation is compensated through balloon contact with the elastic substrate, as well as the mechanism involved behind self-sustained chaotic jumping. Furthermore, we provide insights into the effects of system parameters on the self-sustained jumping behaviors. The emphasis in this study is on the self-sustained chaotic jumping system, and the variation of the balloon jumping modes with parameters is illustrated through bifurcation diagrams. This work deepens the understanding of chaotic motion, contributes to the research of motion behavior control of smart materials, and provides ideas for the bionic design of chaotic vibrators and chaotic jumping robots.

Funder

National Natural Science Foundation of China

Anhui Provincial Natural Science Foundation

University Natural Science Research Project of Anhui Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3