One-Dimensional Nickel Molybdate Nanostructures with Enhanced Supercapacitor Performance

Author:

Sun Baodong1,Wang Shaomin2,Zhang Mingyi2ORCID

Affiliation:

1. College of Teacher Education, Harbin Normal University, Harbin 150025, China

2. Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China

Abstract

One-dimensional NiMoO4 nanofibers were successfully prepared by electrospinning and high-temperature calcination. The supercapacitor performance tests were conducted on the prepared materials in a three-electrode system, and it was found that the calcination temperature during the preparation of the fibers seriously affects the final morphology and electrochemical performance of the obtained samples. The sample with a calcination temperature of 500 °C has better performance, its specific capacitance can reach 1947 F g−1, and the retention rate is 82.35% after 3000 cycles of constant current charging–discharging. The improvement of electrochemical performance is primarily on account of the unique one-dimensional nanostructure of the material, which can both enhance the charge transfer efficiency and effectively increase the speed of electrolyte ion diffusion.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3