Interfacial Water Stability between Modified Phosphogypsum Asphalt Mortar and Aggregate Based on Molecular Dynamics

Author:

Liang Cancan1,Li Yilang2,Feng Ponan1,Li Yuanle3ORCID

Affiliation:

1. College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China

2. Nan County Tobacco Monopoly Bureau, Yiyang 413299, China

3. School of Highway, Chang’an University, South Erhuan Middle Section, Xi’an 710064, China

Abstract

The objective of this study is to unravel the modification mechanism of a coupling agent on the water sensitivity of phosphogypsum asphalt mortar. The adhesion process of phosphogypsum asphalt mastic modified with three kinds of coupling agents (KH-550, KH-570, and CS-101) and raw phosphogypsum to the aggregate minerals was simulated based on the molecular dynamics software, Materials Studio 2020, and the water film layer was considered along the simulation. When the three coupling agents were added, the interfacial adhesion work gradually increased with the increase of modified phosphogypsum dosage, and the trends of each model were relatively similar. With the increase of simulation time, the mean square displacement of water molecules of the three interfacial models showed different trends, and the increasing trend rank was unmodified phosphogypsum > KH-550 > KH-570 > CS-101. The diffusion coefficient of the water molecular layer of asphalt mastic modified with CS-101 coupling agent in phosphogypsum shows a significant decrease with the increase of CS-101-modified phosphogypsum (more than 5% mass ratio to asphalt). Compared to raw phosphogypsum asphalt mortar, the addition of coupling agents can significantly limit the diffusion of water molecules and effectively improve the interfacial adhesion work, in which CS-101 coupling agent has the best effect, followed by KH-570 and KH-550.

Funder

National Natural Science Foundation of China

Postdoctoral Research Grants in Henan Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3