Laser-Induced Graphene Formation on Polyimide Using UV to Mid-Infrared Laser Radiation

Author:

Fiodorov Vitalij1ORCID,Trusovas Romualdas1ORCID,Mockus Zenius2,Ratautas Karolis1ORCID,Račiukaitis Gediminas1ORCID

Affiliation:

1. Department of Laser Technologies, Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania

2. Department of Chemical Engineering and Technology, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania

Abstract

Our study presents laser-assisted methods to produce conductive graphene layers on the polymer surface. Specimens were treated using two different lasers at ambient and nitrogen atmospheres. A solid-state picosecond laser generating 355 nm, 532 nm, or 1064 nm wavelengths and a CO2 laser generating mid-infrared 10.6 µm wavelength radiation operating in a pulsed regime were used in experiments. Sheet resistance measurements and microscopic analysis of treated sample surfaces were made. The chemical structure of laser-treated surfaces was investigated using Raman spectroscopy, and it showed the formation of high-quality few-layer graphene structures on the PI surface. The intensity ratios I(2D)/I(G) and I(D)/I(G) of samples treated with 1064 nm wavelength in nitrogen atmosphere were 0.81 and 0.46, respectively. After laser treatment, a conductive laser-induced graphene layer with a sheet resistance as low as 5 Ω was formed. Further, copper layers with a thickness of 3–10 µm were deposited on laser-formed graphene using a galvanic plating. The techniques of forming a conductive graphene layer on a polymer surface have a great perspective in many fields, especially in advanced electronic applications to fabricate copper tracks on 3D materials.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3