Stable Surface Modification by Cold Atmospheric-Pressure Plasma: Comparative Study on Cellulose-Based and Synthetic Polymers

Author:

Chiper Alina Silvia1ORCID,Borcia Gabriela1

Affiliation:

1. Iasi Plasma Advanced Research Center (IPARC), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Blvd. Carol I No. 11, 700506 Iasi, Romania

Abstract

This study’s aim is a comparison of the plasma-induced effects on polymers exposed in helium and argon gaseous environments in a pulsed dielectric barrier discharge at atmospheric pressure. Cellulose-based and synthetic polymers are tested with regard to a range of parameters, such as wettability, adhesion, surface energy and polarity, the oxygen amount in their structure, and surface morphology. The surface properties are analyzed by contact angle measurements, X-ray photoelectron spectroscopy, and scanning electron microscopy images. The results point to the efficient and remarkably stable modifications of the plasma-exposed surfaces, such as their enhanced adhesion, surface energy, and oxygen incorporation. Additionally, plasma provides significant oxygen uptake in cellulose-based materials that bear already prior to treatment a high amount of oxygen in their structure. The comparison between the properties of the non-permeable, homogeneous, smooth-surface synthetic polymer and those of the loosely packed, porous, heterogeneous cellulose-based polymers points to the different rates of plasma-induced modification, whereby a progressive alteration of cellulosic surface properties over much larger ranges of exposure durations is noted. Present experimental conditions ensure mild treatments on such sensitive material, such as paper, and this is without alterations of the surface morphology and the physical degradation of the material over a large range of treatment duration.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3