Regulation Mechanism of Special Functional Groups Contained in Polymer Molecular Chains on the Tribological Properties of Modified Ti6Al4V

Author:

Liu Mengmeng1,Ni Jing1ORCID,Zhang Caixia2,Wang Lihui2,Guo Yue1,Liu Zhifeng3

Affiliation:

1. School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

2. Institute of Advanced Manufacturing and Intelligent Technology, Beijing University of Technology, Beijing 100124, China

3. Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, Changchun 130012, China

Abstract

Polymer coatings can effectively improve the surface tribological properties of human implant materials, thereby increasing their service life. In this study, poly(vinylsulfonic acid, sodium salt) (PVS), poly(acrylic acid) (PAA) and poly(vinylphosphonic acid) (PVPA) were used to modify Ti6Al4V surfaces. Experimental analyses were combined with molecular simulation to explore the regulation mechanism of special functional groups contained in polymer molecular chains on the tribological properties of modified surfaces. In addition, the bearing capacities and velocity dependence of different polymer modified surfaces during friction were also explored. The PVS coating, due to physical adsorption, can have an anti-friction effect under NaCl solution lubrication, but is not durable under long-term or repeated usage. Both PAA and PVPA molecular chains can form chemical bonds with Ti6Al4V. Phosphate acid groups can firmly bind to the substrate, and the adsorption of salt ions and water molecules can form a hydrated layer on the PVPA coating surface, achieving ultra-low friction and wear. The adsorption of salt ions would aggravate the surface wear of the PAA-modified Ti6Al4V due to the unfirm binding of carboxyl groups to the substrate, resulting in a high friction coefficient. This study can provide effective guidance for the design of modified polymer coatings on metals.

Funder

National Natural Science Foundation of China

National Natural Science Foundation Regional Innovation and Development Joint fund

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3