Preparation and Characterization of Polycarbonate-Based Blend System with Favorable Mechanical Properties and 3D Printing Performance

Author:

Liu Hao1ORCID,Chen Simin1,Li Chengdi1ORCID,Chen Xiao1ORCID,Li Jinbo1,Chen Ping1,Xie Fuzhen1,Jian Huihua1,Huang Xiaoying1,Liu Lei1

Affiliation:

1. Xinyu Key Laboratory of Materials Technology and Application for Intelligent Manufacturing, School of Mechanical and Electrical Engineering, Xinyu University, Xinyu 338004, China

Abstract

Recently, material extrusion (MEX) 3D printing technology has attracted extensive attention. However, some high-performance thermoplastic polymer resins, such as polycarbonate (PC), cannot be processed by conventional MEX printing equipment due to poor processing performance. In order to develop new PC-based printing materials suitable for MEX, PC/poly(butylene adipate-co-terephthalate) (PBAT) blends were prepared using a simple polymer blending technique. It was found that the addition of PBAT component significantly improved processing performance of the PC, making the blends processable at 250 °C. More importantly, the PC was completely compatible with the PBAT, and the PBAT effectively reduced the Tg of the blends, endowing the blends with essential 3D printing performance. Furthermore, methyl methacrylate-butadiene-styrene terpolymer (MBS) was introduced into the PC/PBAT blends to improve toughness. SEM observations demonstrated that MBS particles, as stress concentration points, triggered shear yielding of polymer matrix and absorbed impact energy substantially. In addition, the MBS had little effect on the 3D printing performance of the blends. Thus, a PC/PBAT/MBS blend system with favorable comprehensive mechanical properties and 3D printing performance was achieved. This work can provide guidance for the development of novel MEX printing materials and is of great significance for expanding the variety of MEX printing materials.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi

Science and Technology Project of Jiangxi Educational Bureau

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3