Mechanical Performance and Failure Analysis of a 3D-Printed “Continuous Layer–Lattice Layer–Continuous Layer” Sandwich Structure

Author:

Nie Daming1,Kong Lingyu1,Zhang Yu1,Qiu Xingyu2,Fu Yili1,Gu Jason3

Affiliation:

1. Research Center for Intelligent Robotics, Zhejiang Lab, Hangzhou 311100, China

2. School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 311100, China

3. Department of Electrical and Computer Engineering, Dalhousie University, Halifax, NS B3M 1A2, Canada

Abstract

Sandwich structures are engineered with continuous layers surrounding the inner lattices, which combines the advantages of the high strength of the continuous layer and the light weight of the lattice layer. They are widely employed in weight-critical energy-absorbing engineering fields such as aerospace, automobile, and robotics. However, the application of sandwich structures made of polymer matrix composites is still limited due to lack of essential performance investigation and adequate reference data. The following innovative works are accomplished in this paper: (i) Continuous long glass fiber (CGF) is employed within the continuous layer of the sandwich structure, with composite short carbon fiber/polyamide (SCF/N) applied within the lattice layer. (ii) Sandwich structures with different cell types and orientations of the lattice infills are designed and prepared by additive manufacturing. (iii) The basic mechanical properties of the sandwich structures, i.e., the bi-directional tension/compression compound performance, failure modes and mechanisms in characteristic directions, are analyzed systematically. (iv) The effects of geometric features on the three-point bending properties of L-shaped sandwich structures are investigated and compared with those of pure SCF/N structures. The results show that the bending resistance per unit weight was up to 54.3% larger than that of pure SCF/N, while the weight could be decreased by 49%, and the bending flexibility before fracture could be increased by 44%. These studies contribute fundamental research data to the application of sandwich structures prepared by fiber reinforced polymer matrix composites.

Funder

Zhejiang Provincial Natural Science Foundation

the project “High-performance biped robot and its application”

Zhejiang Lab and the Key Research Project of Zhejiang Lab

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3