Recent Challenges and Trends of Polyhydroxyalkanoate Production by Extremophilic Bacteria Using Renewable Feedstocks

Author:

Możejko-Ciesielska Justyna1ORCID,Ray Subhasree2,Sankhyan Shivangi2

Affiliation:

1. Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10719 Olsztyn, Poland

2. Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida 201310, India

Abstract

Polyhydroxyalkanoates (PHAs) are biodegradable polymers with immense potential in addressing the global plastic pollution crisis and advancing sustainable bioplastics production. Among the various microbes known for PHA production, extremophilic bacteria possess unique capabilities to thrive under extreme conditions, making them attractive candidates for PHA synthesis. Furthermore, the utilization of renewable feedstocks for PHA production aligns with the growing demand for sustainable bioplastic alternatives. A diverse range of extremophilic bacteria, especially halophiles and thermophiles, has provided cost-competitive platforms for producing customized PHA polymers. Extremophilic bacteria offer unique advantages over mesophiles due to their contamination resistance, high cell density growth, and unique culture conditions. The current status of Halomonas spp. as a chassis further allows exploration of metabolic engineering approaches to overcome the challenges associated with current industrial biotechnology. This article especially focuses on extremophilic bacteria and explores recent advances in utilizing renewable feedstocks such as lignocellulosic biomass, agro-industrial residues, and waste streams for PHA production. The integration of biorefinery concepts and circular economy principles in PHA manufacturing is also examined. This review is an attempt to provide an understanding of renewable substrates as feedstocks and emerging trends in PHA production by extremophilic bacteria. It underscores the pivotal role of extremophiles and sustainable feedstock sources in advancing the feasibility and eco-friendliness of PHAs as a promising biopolymer alternative.

Funder

University of Warmia and Mazury in Olsztyn

Sharda University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3