Investigation of Crystallization, Morphology, and Mechanical Properties of Polypropylene/Polypropylene-Polyethylene Block Copolymer Blends

Author:

Shao Wenjun12,Liu Li-Zhi1ORCID,Wang Ying12,Wang Yuanxia1ORCID,Shi Ying13ORCID,Song Lixin1ORCID

Affiliation:

1. Advanced Manufacturing Institute of Polymer Industry, Shenyang University of Chemical Technology, Shenyang 110142, China

2. School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China

3. Dongguan HAILI Chemical Material Co., Ltd., Dongguan 523808, China

Abstract

Polyethylene (PE)-based elastomers are the ideal choice for enhancing the compatibility of polypropylene/polyethylene (PP/PE) blends and improving the mechanical properties of PP-based materials. However, the issue of blend systems lies in the interplay between the crystallization processes. Therefore, we investigated the crystallization behavior during the cooling process of a new generation of PP/PE block copolymers (PP-b-PE) and random polypropylene (PPR, a copolymer of propylene and a small amount of ethylene or an alpha-olefin) blends using in-situ X-ray diffraction/scattering and differential scanning calorimetry (DSC) techniques. We also conducted mechanical performance tests on PPR/PP-b-PE blends at room temperature and low temperature (−5 °C). The results indicate that during the cooling process, the PP phase of PP-b-PE will follow the PPR to crystallize in advance and form a eutectic mixture, thereby enhancing the compatibility of PP/PE. Moreover, the PPR/PP-b-PE blend will form stable β-(300) crystals with excellent mechanical properties. Due to the improved compatibility of PP/PE with PP-b-PE, PE crystals are dispersed within PP crystals, providing bonding that improves the toughness of PPR under the low stiffness failure conditions of PPR/PP-b-PE blends, thereby enhancing their impact performance at low and room temperatures. This research has great significance for both recycling waste plastics and enhancing the low-temperature toughness of PPR.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3